
vgo Documentation
Release 0.0.1

Justus Winter

September 25, 2016

Contents

1 vgo - verifiable go 3
1.1 Goals . 3

2 Installing vgo 5
2.1 Obtaining vgo . 5
2.2 Compiling vgo . 5
2.3 Running the test suite . 5
2.4 Installing vgo . 5
2.5 Using vgo . 6

3 The vgo tutorial 7
3.1 Getting started . 7
3.2 The microwave oven . 10
3.3 Numerical values and constructors . 11
3.4 The Nim game . 12

4 Indices and tables 15

i

ii

vgo Documentation, Release 0.0.1

Contents:

Contents 1

vgo Documentation, Release 0.0.1

2 Contents

CHAPTER 1

vgo - verifiable go

Verifiable go or vgo for short is a subset of the go programming language introduced by Google that has been extended
so that the programmer can use a temporal logic (CTL) to express assumptions and guarantees directly within the
source code.

The tool is invoked like the go build system itself. It verifies that the code has the desired properties and produces a
compiled library or aborts with an appropriate error message.

This has a number of advantages:

• The tool fits very well into the usual development practices.

• Verification failures prevent compilation of the code.

• The very same code that has been model checked is compiled, there is no need to translate the code to an
intermediate language.

The produced library is a standard go module that other code written in go can use. This makes it possible to divide
the code into parts that can be verified (like the core logic) and parts that is not easily verifiable (any kind of I/O, user
interfaces, etc.).

1.1 Goals

The goals of vgo are

• to provide an implementation of a modular model checking framework for further experimentation and

• to provide a tool capable of checking properties of programs written in a modern imperative programming
language while focusing on usability aspects, i.e. to provide a tool that can be used by programmers without
intimate knowledge of the theoretical background of model checking.

3

vgo Documentation, Release 0.0.1

4 Chapter 1. vgo - verifiable go

CHAPTER 2

Installing vgo

2.1 Obtaining vgo

The source code of vgo is available via mercurial. Provided that you have mercurial installed, you can obtain vgo by
doing:

% hg clone https://bitbucket.org/teythoon/vgo
destination directory: vgo
requesting all changes
adding changesets
adding manifests
adding file changes
[...]

2.2 Compiling vgo

In order to compile vgo you need the golang tool chain. On Debian systems you can install it using aptitude install
golang.

Go to your vgo checkout and do:

% make
GOPATH=[...] go install vgo
[...]

2.3 Running the test suite

To make sure that your build of vgo works as expected, you can optionally run the test suite:

% make test
[...]
170 / 170 tests successful.

2.4 Installing vgo

You can optionally install vgo to a location of your choice by running:

5

vgo Documentation, Release 0.0.1

% make install PREFIX=/usr/local/stow/vgo
[...]

2.5 Using vgo

All of vgos functionality can be invoked using the vgo binary. Running it without arguments to get a list of available
commands:

vgo is a frontend for the verifiable go toolchain.

Usage:

vgo [vgo options] command [command options] [command args]

The commands are:

install verifies and installs the given vgo package
inspect vgo reports interactively
runtests runs the vgo test suite
config prints the vgo configuration
version prints the vgo version
help prints usage and flags of a given command

Use "vgo help [command]" for more information about a command.

Additional help topics:

options global vgo options

Use "vgo help [topic]" for more information about that topic.

vgo needs its source code to translate model checking stubs in the verification step. It uses the environment variable
VGOROOT to locate it. If VGOROOT is not set, it defaults to /usr/lib/vgo. As a convenience if you run vgo directly
from the source tree it uses this location automatically.

If you have installed vgo to ${PREFIX}, you must set VGOROOT to ${PREFIX}/lib/vgo. Make sure that the vgo
frontend vgo is in your ${PATH}. With bourne shell like shells this can be done using:

% export VGOROOT="${PREFIX}/lib/vgo"
% export PATH="${PREFIX}/bin:${PATH}"
% vgo runtests
[...]
170 / 170 tests successful.

6 Chapter 2. Installing vgo

CHAPTER 3

The vgo tutorial

Welcome to the vgo tutorial. You will need a working vgo installation and either a vgo source checkout or the vgo-doc
package installed. To generate graphs the graphviz package is needed. On Debian like systems you can install it using
aptitude install graphviz.

You will find the source code for each example here either in the source tree under docs/tutorial or /usr/share/doc/vgo-
doc/tutorial.

3.1 Getting started

The source for this example is in the directory tutorial0. Copy this directory and fire up vgo:

% cp --recursive /usr/share/doc/vgo-doc/tutorial/tutorial0 /tmp
% cd /tmp/tutorial0
% vgo install -report gettingstarted
02:35:31 [Info] Welcome to the one and only model checker!
02:35:31 [Info] vgo version 0.0.1.44202be27a4b+
02:35:31 [Info] Writing report into /tmp/vgo-install126016440
02:35:32 [Info] Constructing model for type sometype
02:35:32 [Info] sometype: Exploring state space
02:35:32 [Info] Found 2 distinct states connected by 1 edges
02:35:32 [Info] sometype: State space explored
02:35:32 [Info] Package gettingstarted installed successfully

vgo explores the graph of reachable states, also known as Kripke structure, and renders it as a scalable vector graphic
if asked to do so using the -report flag. Let us have a look at this image:

% xdg-open /tmp/vgo-install126016440/sometype.svg

The image should look like this:

7

vgo Documentation, Release 0.0.1

0

1 sometype{}

New()

The each node in this diagram is a state of the program. The state 0 is special though, it is there to be a common parent
to all objects created by the constructors. There is only one constructor and it allocates sometype objects using new.
Since the memory is zeroed, the field a is set to false (the zeroish value of type bool).

So this is not a very interesting program, it has just one state since there is no way to modify the non-exported field a.
But it is a start. Let us look at it in more detail.

Each node is a reachable state and has a unique number. It is also labeled with the string representation of the object
representing that state. This string representation uses an optimization for boolean fields, if a field is true, its name is
included, if it is false, it is omitted. Since the string representation is sometype{}, the field a must be false in this state.

Every edge indicates a possible state transition and is annotated with the method that invokes this state transition. In
this example the only edge is the one of the New() constructor.

Let us look at the source. Open src/gettingstarted/main.vgo with your favorite editor and enable the go syntax high-
lighting mode. You will see this:

package gettingstarted

type sometype struct {
a bool

}

func New() *sometype {
return new(sometype)

}

This is both a valid vgo and a valid go program. vgo is a superset of a subset of go. It starts with a package declaration
and defines a type sometype with a private member a of type bool.

Let us now add a method to make the program more interesting. Add the following to the file main.vgo:

func (s *sometype) SetA() {
s.a = true

}

If you recompile the program using vgo, you will see:

8 Chapter 3. The vgo tutorial

vgo Documentation, Release 0.0.1

0

1 sometype{}

New()

2 sometype{a}

SetA()

SetA()

So we added a method SetA() that sets the member a to true. Consequently we now see a second state 2 that can be
reached from the initially constructed state 1 by invoking the SetA method. If we are in state 2 and invoke this method
again, nothing changes.

Now let us annotate our type with guarantees that can be verified using the model checking engine in vgo. Let us
specify, that on all (infinite) paths there is some point in the future where the member a is true. The corresponding
CTL formula is 𝐴𝐹𝑎. Extend the vgo type declaration to read:

type sometype struct {
a bool

} satisfying {
AF`s.a`

}

In vgo atomic propositions are enclosed in backticks (‘) and must be go expressions of type boolean. The current
object is bound to s, so s.a accesses the member a of type boolean (in case you are not familiar with go note that it is
customary to name this reference like the first letter of your type converted to lower case, so it is a s because the type
is called sometype). If you recompile the program you will see:

% vgo install -report gettingstarted
03:30:08 [Info] Welcome to the one and only model checker!
03:30:08 [Info] vgo version 0.0.1.44202be27a4b+
03:30:08 [Info] Writing report into /tmp/vgo-install608100277
03:30:09 [Info] Constructing model for type sometype
03:30:09 [Info] sometype: Exploring state space
03:30:09 [Info] Found 3 distinct states connected by 3 edges
03:30:09 [Info] sometype: State space explored
03:30:09 [Info] conventional.Check(sometype, AF`s.a`) successful.
03:30:09 [Info] Package gettingstarted installed successfully

So the program was found to be fulfilling the specification. Go ahead and add another guarantee like 𝐸𝐹𝐴𝐺𝑎.

3.1. Getting started 9

vgo Documentation, Release 0.0.1

3.2 The microwave oven

Microwave ovens are a canonical model checking showcase, so let us implement one. The source for this example
is in tutorial1, you can compile it using vgo install microwave. If you get stuck in this section, you can look at the
microwave example shipped with vgo under src/vgo/tests/microwave.

If you look at the source you will find the following type declaration:

type microwave struct {
on bool // is the microwave on?
open bool // is the door open?
error string // was the microwave used incorrectly? how?

} satisfying {
AG!(`m.DoorOpen()` & `m.On()`) // the microwave is never on if the

// door is open

AG!(`m.Error()` & `m.On()`) // the microwave is never on if the
// error flag is set

AGEF!(`m.Error()` | (`m.On()` | `m.DoorOpen()`)) // resettable

AGAF!`m.On()` // the microwave is never on forever
}

Currently the microwave fulfills the specification, but it is a not a very useful microwave since one cannot turn it on.
Please implement the methods Start(), Tick(), Open(), Close(), Reset() and setError(s). Some remarks:

• It should be considered an error if one invokes Start() while the door is open.

• Tick() models elapsing time. Cooking should require one unit of time. The bool field on models this just fine.

• There are two kinds of errors here:

• Imagine a microwave with the door closed. Now a user can open the door and she gets a microwave with the
door being open. It is not possible to open the door again, since it is already open. The Open() function should
reflect this by returning an error. Note that by returning an error you indicate to vgo that you do not change
state of the object.

• But if on the other hand she presses the start button while the door is still open, we want to inform her of this
error by displaying it and make her acknowledge the error by resetting the microwave. The Start() function
should set the error field to an appropriate message using setError(s).

The vgo frontend has a switch to display verification reports using your browser:

% vgo install -inspect microwave

For reference, here is the Kripke structure of the microwave in src/vgo/examples/microwave which fulfills the specifi-
cation:

10 Chapter 3. The vgo tutorial

vgo Documentation, Release 0.0.1

0

1 microwave{error: ""}

New()

...

2 microwave{error: "",
on}

Start()

3 microwave{error: "",
open}

Open()

...

Open()

6 microwave{error:
"the microwave is

already on"}

Start()

Close()

Tick()

4 microwave{error:
"door is open",

open}

Start()Reset()

...

5 microwave{error:
"door is open"}

Close()

Reset()

Open()

...

Reset()

...

7 microwave{error:
"the microwave is
already on", open}

Open()

Reset()

Start()

Close()

Tick()

3.3 Numerical values and constructors

So far we only used types that were structs containing booleans. But one of the cool features of go (and thus vgo) is
the fact that you can define specialized versions of primitive data types and bind methods to them.

Model Checking suffers from the so called state explosion problem. This problem gets worse if we use numeric data
types because there are 232 possible 32 bit integers and thus possible states instead of the two possible values of a
boolean. Exploring the state space of a program using a single 32 bit integer is not feasible if done naively, but there
are ways to work around that (e.g. abstract interpretation). Currently vgo handles only small integers, but we can do
some interesting things nonetheless.

Let us have a look at tutorial2/src/collatz/collatz.vgo:

package collatz

import "fmt"

type collatz uint8 satisfying {
AGAF`*c == 1`

}

// New constructs objects of type collatz.
func New(n uint8) (*collatz, error) {

if n == 0 || n > 9 {
return nil, fmt.Errorf("too large: %v", n)

3.3. Numerical values and constructors 11

vgo Documentation, Release 0.0.1

}

c := collatz(n)
return &c, nil

}

// Step computes one step of the collatz conjecture, i.e. it changes c
// to c/2 if c is even else c*3+1.
func (c *collatz) Step() {

// implement this function
}

Some notes:

• In the declaration of Step(), c is called the receiver.

• As before the receiver is a pointer type (c *Collatz), so you can use the dereference operator * to access and
modify its value (e.g. *c = 5).

• If you haven’t heard of the Collatz conjecture, you can consult Wikipedia.

• You can use the -compact-graphs flag to make vgo create more compact graphs by omitting the numerical node
ids and edge labels.

Tasks:

• Implement Step(). Check whether your work fulfills the specification.

3.4 The Nim game

So far the examples have been somewhat constructed and we haven’t seen the code run. So let us consider a more
interesting example and implement the Nim game. The code for this section is in tutorial/tutorial3, it contains a Nim
engine written in vgo (src/engine) and a console application written in go using the engine (src/nim). If you get stuck
in this section, you can look at src/vgo/tests/engine.

This example highlights an important concept of vgo, namely the separation of programs into parts that can be model
checked (i.e. the game engine) and parts that cannot easily be model checked (i.e. the frontend).

The most interesting part is in src/engine/engine.vgo. The type declaration reads:

type nim struct {
heaps [3]uint8 // the three heaps
turn Player // turn indicates whos turn it is

} satisfying {
!EF`n.Evaluate() == OPPONENT` // the engines opponent never wins

AGEF`n.Evaluate() == ENGINE` // there is always a path where
// eventually the engine has won

}

Some notes:

• Move(*Move) error is used to execute moves for the engines opponent. If the move is not valid in the current
game state, it returns an error.

• Ponder() (*Move, error) uses ponder() (*Move, error) to generate a move for the engine and executes and returns
the move.

• The type nim has two guarantees stating that there is no reachable state in which the opponent (i.e. you) has
won and that in every state there is always a path where in the future the engine has won.

12 Chapter 3. The vgo tutorial

vgo Documentation, Release 0.0.1

• ponder() currently generates an arbitrary valid move.

• There is a Makefile, you can execute make to build the engine and (provided the verification was successful) the
frontend bin/nim.

• In go and thus vgo the operator for exclusive or is ^.

Tasks:

• Implement the winning strategy described below in ponder().

• (optional) Create a modified version for the misère version of the game.

• (optional) Modify the game to handle arbitrary starting positions.

Some theory:

• The key to winning the game is to finish every move with a nim sum over all stacks of 0. The nim sum is binary
exclusive or.

• If the nim sum of all the stacks is not 0, it is always possible to make a move to make the sum 0. In the default
starting position (3, 4, 5) the nim sum is not 0, so the first player has a winning strategy.

The winning strategy is:

• Compute s, the nim sum of all heaps.

• Iterate over the heaps

– test whether count ^ s < count. If this is the case, return the move that removes count - (count ^ s) objects
from that heap. This results in a state where the nim sum is 0.

3.4. The Nim game 13

vgo Documentation, Release 0.0.1

14 Chapter 3. The vgo tutorial

CHAPTER 4

Indices and tables

• genindex

• modindex

• search

15

	vgo - verifiable go
	Goals

	Installing vgo
	Obtaining vgo
	Compiling vgo
	Running the test suite
	Installing vgo
	Using vgo

	The vgo tutorial
	Getting started
	The microwave oven
	Numerical values and constructors
	The Nim game

	Indices and tables

